Le principe de la récurrence, au lycée ! Une mise en garde...

Il est désolant de savoir que le manuel scolaire (المفيد في الرياضيات), officiellement validé par le MEN marocain (11CB11606 au 19/07/2006) propose en activité introductive au chapitre des "Eléments de logique", à la page 19, une démonstration du "principe du raisonnement par récurrence" basée sur le théorème de Zermelo qui dit que « toute partie non vide de IN, admet un plus petit élément ».
On insiste sur le fait que, ce principe de récurrence découle directement de l’un des axiomes de Peano qui permettent de construire l’ensemble des entiers naturels ; « Pour toute partie A de
IN, si A contient 0 et si A contient le successeur de chacun de ses éléments, alors A=IN ». Un tel principe ne se démontre pas et on n’est pas tenu à le démontrer !!

Toutefois, il existe une autre construction axiomatique de IN, pour laquelle, ce théorème de Zermelo prend le statut d’axiome. Et dans ce cas, la démonstration du « principe de la récurrence » devient légitime et méthodologiquement nécessaire ! Mais, il fallait signaler ce fait, même si, en aucun moment jusqu’ici, l’élève ne s’est confronté avec une quelconque construction axiomatique de IN. D’ailleurs, son niveau cognitif ne le permettait pas. Puisque tout au longs de son parcours scolaire, toutes ses activités s’articulaient autour de simples « manipulations » sur les entiers naturels ! Rien de plus !...
D’où avertissement ! 

Aucun commentaire:

Enregistrer un commentaire